日本爽快片18禁片免费久久,久久九九国产精品怡红院,久久精品国产大片免费观看,国产女人高潮抽搐叫床视频,亚洲AV毛片一区二区三区,久久久久久91香蕉国产

達能營(yíng)養中心第九屆學(xué)術(shù)研討會(huì )論文集

耿越 涂文利 張健 張靜靜 張晾
(山東師范大學(xué)生命科學(xué)學(xué)院,濟南,250014)

摘要目的使用超臨界二氧化碳萃取技術(shù)萃取油菜花粉中的脂質(zhì),研究萃取物對高脂血大鼠的降血脂效果。 方法建立大鼠高脂血模型,大鼠隨機分為基礎飼料對照組、高脂飼料對照組、陽(yáng)性藥物對照組、低劑量萃取物組、中劑量萃取物組、高劑量萃取物組。藥物和花粉萃取物灌胃,四周后處死大鼠,檢測血清和肝臟指標。 結果:油菜花粉超臨界二氧化碳萃取物是以α亞麻酸為主的不飽和脂肪酸油脂。與高脂對照組相比,不同含量的花粉萃取物可以不同程度的降低高脂血大鼠血清中TG和TC水平;降低肝臟中TC水平,明顯升高肝臟HDLC和apoAI水平,三個(gè)劑量組對大鼠肝臟LDLC和apoB降低效果不同,顯著(zhù)降低大鼠肝臟中游離膽固醇水平(P<005);花粉萃取物組能升高大鼠血清LCAT水平,抑制HMGCoA還原酶活性;花粉萃取物肝臟脂肪酸中DHA含量明顯高于高脂對照組。 結論:油菜花粉對高血脂大鼠血脂的降低作用,主要是通過(guò)增加HDLC和LCAT水平,促進(jìn)膽固醇轉運、代謝和排出,抑制HMGCoA還原酶活性減少膽固醇體內合成,并提高肝臟中DHA含量起作用。
關(guān)鍵詞:超臨界二氧化碳萃取;α亞麻酸;血清脂質(zhì);油菜花粉


Effect of extract by supercritical CO2extraction from rape pollen
on lipid metabolism in experimental hyperlipidemic ratsGeng Yue, TU Wenli, Zhang Jingjing, Zhang Liang, Zhang Jian, Tian Bo
(College of Life Science, Shandong Normal University, Jinan 250014, China )

Abstract:ObjectiveThis study aimed to evaluate the effect of extract by supercritical carbon dioxide extraction from rape pollen on lipid metabolism in experimental hyperlipidemic rats. MethodsThe experimental hyperlipidemic rats were establish by high cholesterol diets. The rats were randomized into six groups including normal control group, high fat control group, medicinal control group, lopollens extraction group, midpollens extraction group, and hipollens extraction group . After four weeks of intraperitoneal injection, the rats were executed, and lipids levels of serum and hepatic tissue were detected. Result: The plasma levels of total cholesterol (TC) and triacylglycerol (TG) were significantly lower in the pollens extraction group and medicinal control group than in the high fat group. Hepatic TG and TC levels were decreased in rats fed pollens extraction and medicinal diets compared with high fat diets. A higher concentration of HDLC and apoAI in hepatic tissue was detected after the pollens extraction diet compared to the high fat diet (P<0.05), whereas reducing of the hepatic LDLC and apoB concentration shows different effects among the pollens extract diets. LCAT in serum of pollen extraction was significant high than HFC, also HMGCoA reductase show decrease tendency in experimental group of pollen extraction. We can drew conclution from valuable data of fatty acid composition that DHA of hepatic lipid was high in pollen extraction group than HFC group.ConclusionThese results suggest that extract from rape pollen rich in alphalinolenic acid seem to decrease the degree of lipid in plasma and hepatic tissue compared to high fats. diet. This is possibly due to increasing activity of LCAT and decreasing activity of HMGCoA reducase and the ratio of clearance of free cholesterol so as to promote transportation, excretion and metabolism of cholesterol in hepatic tissue and serum, also indirectly increase in DHA of heptatic tissue.
Keywords: supercritical Carbon Dioxide extraction; alphalinolenic acid; serum lipids; rape pollen

高脂血癥是動(dòng)脈粥樣硬化的首要危險因素,是與飲食相關(guān)的疾病,預防高脂血癥是治療心腦血管疾病的重要環(huán)節。大量研究表明n3系列不飽和脂肪酸如:EPA、DHA具有降血脂,減少心血管疾病作用,α亞麻酸是n3不飽和脂肪酸的前體,試驗表明對心血管疾病具有預防作用[1],與冠心病及動(dòng)脈粥樣硬化呈負相關(guān)性[2]。Frank等歷時(shí)十年的跟蹤調查研究表明,高攝入富含α亞麻酸的飲食可以預防致命性缺血心臟疾病[3]。法國學(xué)者的研究認為地中海克里特島的居民膳食結構中高含α亞麻酸,與西方其他地區相比心血管疾病顯著(zhù)降低[4]。
我國花粉資源豐富,居世界首位,花粉中多不飽和脂肪酸含量高,尤其在玉米和油菜花粉中含有高水平的α亞麻酸,飽和脂肪酸與不飽和脂肪酸比例合理[5],具有很高的開(kāi)發(fā)利用價(jià)值和可觀(guān)的經(jīng)濟前景。本實(shí)驗采用環(huán)保、萃取速率快、效率高、耗能少、無(wú)殘留的超臨界二氧化碳萃取技術(shù),萃取油菜花粉中的脂質(zhì),研究萃取物對高脂血大鼠降血脂的作用效果,初步揭示其作用機理,為開(kāi)發(fā)調節血脂花粉天然產(chǎn)品提供理論依據。
1 材料與方法
11 油菜花粉超臨界CO2萃取物
油菜(Brassica campestris L)花粉由杭州華黎泵業(yè)有限公司進(jìn)行超臨界二氧化碳萃取加工,萃取工藝條件為:萃取溫度55℃,壓力30MPa,萃取時(shí)間 2小時(shí);分離釜Ⅰ壓力為14MPa,溫度45℃;分離釜Ⅱ壓力為 6MPa,溫度40℃。
脂肪酸組成采用Finnigan Trace GC Ultra/Trace DSQ GC/MS分析。
12 實(shí)驗性高脂血癥大鼠模型建立及處理方法
按文獻報道[6]建立高脂血癥大鼠模型。雄性Wistar大鼠60只,體重140±20g,由山東省中醫藥大學(xué)提供。經(jīng)基礎飼料喂養一周后,隨機分成6組,每組10只,分別為基礎飼料對照組(Normal control, NC),高脂飼料對照組(High fat control, HFC),陽(yáng)性藥物洛伐他汀對照組(Medicinal control, MC),低劑量萃取物組(Low pollen’s extraction,LPE),中劑量萃取物組(Mid pollen’s extraction, MPE),高劑量萃取物組(Hi pollen’s extraction, HPE)。大鼠高脂飼料配方為:2%膽固醇,10%豬油,02%甲基硫氧嘧啶,878%基礎飼料。基礎組喂基礎飼料,其他組喂高脂飼料,洛伐他汀(Lovastatin)由昆明四創(chuàng )藥業(yè)有限公司生產(chǎn),批號:國藥準字H10980011,用藥量為10mg/kg·d,油菜花粉萃取物低、中、高劑量組用量分別為04mg/kg·d,10mg/kg·d,20mg/kg·d,灌胃。動(dòng)物自由飲水,每周稱(chēng)重記錄。大鼠連續給藥喂養4周,禁食12小時(shí)后乙醚麻醉,由腹主動(dòng)脈取血,EDTA抗凝,測定血脂指標。取肝臟稱(chēng)重并測脂質(zhì)相關(guān)組分。
13 測定指標與方法
131 血脂指標測定: TC采用CHODPAP法、TG采用GPOPAP法、HDLC、LDLC采用酶法,試劑盒購自北京中生北控生物科技股份有限公司。apoAⅠ、apoB采用免疫比濁法,試劑盒購自上海榮盛生物技術(shù)有限公司。
132 肝臟脂質(zhì)測定:以生理鹽水制備10%肝臟勻漿,離心后取上清液測定TC、HDLC、LDLC、apoB、apoAⅠ,測試方法同131。
133 血清LCAT與肝臟FC測定:血清LCAT采用蔣憲成的方法[7],LCAT活性以每小時(shí)膽固醇酯化量μmol/L血清表示,游離膽固醇采用日本協(xié)和體外診斷試劑盒測定。
134 HMGCoA還原酶活性測定:參見(jiàn)文獻[8]。酶活力單位(U)定義為1L溶液中每分鐘消耗1微摩爾的HMGCoA[μmol/(L·h)]所需的酶量。
135 肝臟脂肪酸組成測定脂質(zhì)提取方法參見(jiàn)文獻[9],脂肪酸分析方法參見(jiàn)11。
14 統計分析
采用SPSS100統計軟件進(jìn)行方差分析
Seperator
2 結果
21 油菜花粉超臨界CO2萃取物GC/MS
分析(表1)分離釜Ⅰ萃取物以富含α亞麻酸的不飽和脂肪酸為主,相對含量高達7125%;分離釜Ⅱ以飽和烷烴為主,其中二十烷烴占4670%,而α亞麻酸僅占1404%。實(shí)驗采用分離釜Ⅰ中的油菜花粉萃取物。
22 對大鼠生長(cháng)發(fā)育的影響(表2)
實(shí)驗過(guò)程中大鼠進(jìn)食正常,各組大鼠體重增加無(wú)顯著(zhù)差異,喂高脂飼料的各實(shí)驗組之間肝臟重量/體重值沒(méi)有明顯差異。說(shuō)明花粉超臨界二氧化碳萃取物對大鼠增重及肝臟無(wú)異常影響。



23 對大鼠血脂水平的影響(表3)
與高脂對照組相比,洛伐他汀藥物組能明顯降低TG、TC水平;油菜花粉超臨界二氧化碳萃取物三個(gè)劑量組能夠明顯降低高脂血大鼠血清中TG含量,作用效果與洛伐他汀藥物組接近;低劑量和中劑量組對高脂血大鼠血清TC的降低作用顯著(zhù),明顯低于高脂對照組,低劑量組作用效果更好;與高脂對照組相比,三個(gè)劑量組對血清HDLC有升高作用,低劑量組明顯升高血清中HDLC水平;低、中劑量組能降低高脂血大鼠血清LDLC含量,效果優(yōu)于或接近藥物組,但差異不顯著(zhù),而高劑量組含量有所升高;藥物組與油菜花粉萃取物組對apoAⅠ作用不明顯,而對apoB有升高的趨勢,其中高劑量組升高作用明顯。



24 對大鼠肝臟脂質(zhì)水平的影響(表4)
與高脂對照組相比,藥物組對肝臟脂質(zhì)中TC、LDLC、apoB降低作用明顯,顯著(zhù)升高apoAⅠ水平。油菜花粉超萃取物的三個(gè)劑量組能夠顯著(zhù)降低高脂血大鼠肝臟中TC含量,而各劑量組之間沒(méi)有差異,作用效果低于藥物組;低劑量和高劑量花粉萃取物組能明顯降低LDLC水平;低劑量和中劑量花粉萃取物組對肝臟apoB的降低作用明顯;三個(gè)劑量組花粉萃取物明顯增加肝臟中apoAⅠ和HDLC水平,低劑量組對HDLC的升高作用顯著(zhù)高于中、高劑量組,中劑量組對apoAⅠ的升高作用明顯高于其他兩個(gè)劑量組;與高脂對照組相比,低劑量花粉萃取物組與藥物組大鼠顯著(zhù)降低肝臟中游離膽固醇水平,說(shuō)明油菜花粉超萃取物加快了肝臟中膽固醇酯化速率。由圖1可以看出花粉萃取物組及洛伐他汀組血清及肝臟中的動(dòng)脈粥樣硬化指數明顯低于高脂對照組。



25 大鼠血清LCAT活性及肝臟HMGCoA
還原酶活性的變化(圖1)藥物組和低、中劑量花粉萃取物組能顯著(zhù)升高大鼠血清LCAT水平;與高脂對照組相比,藥物組及各花粉萃取物組明顯降低肝臟中HMGCoA還原酶活性。
26 大鼠肝臟脂肪酸組成
與基礎組相比,由于高脂飼料中含有較高的油酸,喂養高脂飼料各組油酸含量明顯增加,而DHA與花生四烯酸含量明顯低于基礎組;喂養高脂飼料的高脂對照組和試驗組相比主要的飽和脂肪酸軟脂酸和硬脂酸,單不飽和脂肪酸及油酸相對含量沒(méi)有明顯差異,SFA/PUFA差異不明顯;花粉萃取物組和藥物組中油酸含量低于高脂對照組,但差異不顯著(zhù);與高脂對照組相比,藥物組和花粉萃取物三個(gè)劑量組DHA含量明顯升高。

Figure 1 Atherosclerosis Index of serumand liver in experimental mice


Figure 2Effect of Pollen extraction on LCAT and HMGCoA Reductase of mice


3 討論
本實(shí)驗結果表明:油菜花粉超臨界二氧化碳萃取物以α亞麻酸為主。與高脂對照組相比,不同含量的花粉萃取物可以不同程度的降低高脂血大鼠血清中TG和TC水平;降低肝臟中TC水平,明顯升高肝臟HDLC和apoAI水平,提高血清中 LCAT酶活性,抑制HMGCoA還原酶活性,提高肝臟中DHA水平。
許多研究證實(shí)富含α亞麻酸的油脂如蘇籽油、亞麻油和富含n3系列多不飽和脂肪酸的魚(yú)油都具有降低高血脂的作用[1013],其可能的作用機理是膳食中n3PUFA降低TG合成有關(guān)酶的活性[1415],抑制脂肪酸合成酶、G6P脫氫酶等與脂質(zhì)合成有關(guān)的酶的活性[13],從而降低血脂中TG水平。本實(shí)驗采用分離釜Ⅰ所得的萃取物,其中α亞麻酸的含量占脂肪酸組成的7125%,遠高于蘇籽油的含量445%[11],推測油菜花粉超臨界二氧化碳萃取物降低TG水平的作用機理也與抑制與脂質(zhì)合成相關(guān)的酶活性有關(guān)。
油菜花粉超臨界二氧化碳萃取物具有明顯的升高血清和肝臟中的HDLC和降低肝臟LDLC的作用,但對血清中的LDLC降低效果不明顯,高劑量組甚至略有升高。實(shí)驗研究表明富含α亞麻酸的蘇籽油及亞麻油具有降低膽固醇作用[10-12,16],但對血清LDLC代謝沒(méi)有明顯影響[17-20] ,對脂蛋白沒(méi)有明顯作用[20]。以α亞麻酸為主的花粉萃取物降低高脂血大鼠膽固醇時(shí),對血清LDLC和apoB沒(méi)有降低的作用,在高劑量組反而有所升高。不飽和脂肪酸是構成脂蛋白的成份之一,不飽和脂肪酸的改變影響脂蛋白顆粒物理組成和化學(xué)結構。多不飽和脂肪酸降低LDL中膽固醇酯的熔點(diǎn),而apoB構象變化不明顯[17,21],或者載脂蛋白亞單位重新分布[22];Sorensen等研究表明多不飽和脂肪酸增大LDL顆粒體積,減小LDL顆粒密度,由于LDL顆粒增大減小了氧化危害性,從而降低了動(dòng)脈粥樣硬化的危險性[1819]。n3多不飽和脂肪酸對膽固醇的作用還表現在增強受體依賴(lài)的LDL攝取能力,肝臟LDL受體活性增加,受體與LDL親和力增大,LDL清除速率加快[23],與本實(shí)驗觀(guān)察到肝臟中LDLC降低,游離膽固醇減少相符。
LCAT催化血漿中卵磷脂的酰基轉移至膽固醇,生成膽固醇酯,在膽固醇逆轉運與清除過(guò)程中起重要作用。本實(shí)驗結果表明花粉萃取物對LCAT都有升高作用,其中以中劑量組最為明顯,說(shuō)明花粉萃取物有效的促進(jìn)了膽固醇從血漿中的轉運;在肝臟中游離膽固醇明顯減少,表明大鼠攝食花粉萃取物后,膽固醇經(jīng)HDLC從外周組織轉運入肝臟,酯化效率增加,清除效率提高;多不飽和脂肪酸能夠增加HDL中膽固醇酯和溶血磷脂含量,HDL顆粒結構發(fā)生變化,流動(dòng)性更好,結構更致密,在膽固醇逆轉運過(guò)程中起到良好的載體作用[24]。本實(shí)驗證明花粉萃取物組可以降低HMGCoA還原酶活性,降低膽固醇的生成,與Du C等的試驗結果一致[11]。
在基因水平上脂肪酸作為調控基因表達的信號,與膽固醇在代謝中有密切聯(lián)系。研究表明,PUFAs抑制肝臟中SREBP1,從而對有關(guān)基因起負調控作用,這些基因包括,LDLR、HMGCoA合成酶和還原酶、乙酰CoA羧化酶、脂肪酸合成酶以及硬脂酸CoA去飽和酶。脂肪酸可以單獨起作用,也可以和膽固醇協(xié)同作用;MUPAS和PUFAs通過(guò)改變SREBP成熟,以劑量依賴(lài)型下調SRE表達,并與脂肪酸飽和度有關(guān),增加不飽和度,抑制作用越強[25],PUFAs還與核受體包括肝臟核因子4α(hepatic nuclear factor HNF4α)、肝臟X受體α,β(liver X receptors LXRs)、過(guò)氧化物酶體增殖物激活受體(peroxisome proliferatorsactivated receptors PPARs),或轉錄因子NFκB等作用以多種機制在分子水平上調節相關(guān)酶的基因轉錄[2629]。因此油菜花粉對血脂脂質(zhì)的降低作用,可能是通過(guò)增加HDLC和LCAT水平,促進(jìn)膽固醇轉運、代謝和排出,抑制HMGCoA還原酶活性,減少膽固醇體內合成起作用,并在基因水平上通過(guò)與肝臟核因子4α、肝臟X受體α,β、過(guò)氧化物酶體增殖物激活受體等核受體直接作用,或與轉錄因子固醇調節元件結合蛋白1,2間接作用,以多種機制在分子水平上調節相關(guān)酶的基因轉錄[30],調控血脂在體內的生物代謝平衡。
本項研究中不同濃度的α亞麻酸對高脂血大鼠血脂的降低作用沒(méi)有表現為隨劑量增加而作用增強。說(shuō)明α亞麻酸對血脂的調節作用機理復雜多樣。目前還沒(méi)有強有力的證據證明α亞麻酸對心血管疾病有直接作用[31],一般認為α亞麻酸在體內通過(guò)去飽和和延長(cháng)作用轉化為EPA和DHA[10], ALA在體內受△6去飽和酶的限制[3234]生成EPA和DHA含量有限,但有實(shí)驗結果證明ALA在肝臟中生成DHA[13,35],ALA與DHA在組織內生物合成累計量相似[36],對高脂血癥的降低作用與肝臟微粒體中EPA與DHA的增加有關(guān)[10,13,17],這與本實(shí)驗觀(guān)察到花粉萃取物組DHA含量比高脂對照組明顯增加的結果一致。α亞麻酸與亞油酸的比例影響長(cháng)鏈n3脂肪酸的生成效率[31,3637],不同劑量花粉萃取作用效果沒(méi)有明顯差異反映了α亞麻酸作用受到其他因素的影響。
α亞麻酸是人體必需脂肪酸,被認為是深海魚(yú)油的換代產(chǎn)品。油菜花粉超臨界二氧化碳萃取物以α亞麻酸為主,還有包括抗氧化劑在內的其他成分,因此對高脂血大鼠血清和肝臟中TG和TC水平的降低作用,是以α亞麻酸為主的多種天然成分的共同作用結果,許多長(cháng)期營(yíng)養膳食調查結果也證實(shí)膳食來(lái)源的ALA更加有益于預防心血管疾病的發(fā)生[1-4];一些研究使用合成的α-亞麻酸純制劑,結果表明ALA對高血脂及動(dòng)脈粥樣硬化等心血管疾病作用不明顯[17,19,38],這與實(shí)驗使用的制劑來(lái)源,實(shí)驗動(dòng)物種類(lèi)都有關(guān)系。所以在推薦使用時(shí)還應該進(jìn)行更多的基礎和臨床試驗研究以保證其安全效用。
參考文獻
[1] Gillian CL, Gillian ST, Amanda JL, et al Essential fatty acids and cardiovascular disease: the Edinburgh Artery Study Vascular Medicine 1999; 4:219-226
[2] Djousse L, Pankow JS,  Eckfeldt, et al Relation between dietary linolenic acid and coronary artery disease in the National Heart, Lung, and Blood Institute Family Heart Study Am J Clin Nutr2001; 74(5):612-619
[3] Frank B, Meir J, Joann E et al Dietary intake of αlinolenic acid and risk of fatal ischemic heart disease among women Am J Clin Nutr. 1999; 69:890-897.
[4] de Lorgeril, Salen P, Korup E, Aaroe J et al. Mediterranean alphalinolenic acidrich diet in secondary prevention of coronary heart disease. Lancet. 1994; 43:1454-1459.
[5] 涂文利,耿越,張靜靜等.八種蜜源花粉中脂肪酸組分分析.營(yíng)養學(xué)報 (已錄用)
[6] 苗明三.實(shí)驗動(dòng)物和動(dòng)物實(shí)驗技術(shù).中國中醫藥出版社,北京,1997.6
[7] 蔣憲成,莊慶祺,梅美珍. 卵磷脂膽固醇酰基轉移酶活性的簡(jiǎn)易測定法.上海第一醫學(xué)院學(xué)報,1985,12(2):155.
[8] A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 ;226(1):497-509.
[9] LI Peng,ChenLan ying. Xuezhikang inhibits the activity of HMGCoA reductasse in pig liver. Basic Medical Sciences and Clinics.2003;23:531-534.
[10] Kim HK.Dietary alphalinolenic acid lowers postprandial lipid levels with increase of eicosapentaenoic and docosahexaenoic acid contents in rat hepatic membrane.Lipids.2001;36:1331-1336.
[11] Du C, Akira Sato, Shiro W, et al. Cholesterol synthesis in mice is suppressed but lipofuscin formation is not affected by longterm feeding of n3 fatty acidenriched oils compared with lard and n6 fatty acidenriched oils. Biol Pharm Bull.2003; 26:766-770.
[12] Sakai K, Shimokawa T, Kobayashi T et al. Lipid lowering effects of high linoleate and high alphalinolenate diets in rats and mice. Consequence of longterm feedings. Chem Pharm Bull (Tokyo). 1992; 40:2129-2132.
[13] Kim HK, Choi S, Choi H. Suppression of hepatic fatty acid synthase by feeding alphalinolenic acid rich perilla oil lowers plasma triacylglycerol level in rats. J Nutr Biochem. 2004 ;15(8):485-92.
[14] Ide T, Kobayashi, H, Ashakumary L. Comparative effects of perrila and fish oils on the activity and gene expression of fatty acid oxidation enzymes in rat liver. Biochim.Biophys.Acta. 2000;1485:23-35.
[15] Kabri,Y Ide,T. Activity of hepatic fatty acid oxidation in rats fad alphalinolenic acid. Biochim Biophys Acta. 1996;1304:105-119.
[16] Leisa R,Rachel S Katherine M et al. Cholesterol lowing benefits of soy and linseed enriched foods. Asia Pacific J Clin Nutr.2001;10:204-211.
[17] Nenseter MS, Rustan AC, LundKatz S et al. Effect of dietary supplementation with n3 polyunsaturated fatty acids on physical properties and metabolism of low density lipoprotein in humans. Arterioscler Thromb.1992;12(3):369-79.
[18] Sorensen NS, Marckmann P, ClarlErik H et al. Effect of fishoilenriched margarine on plasma lipids, lowdensitylipoprotein particle composition, size, and susceptibility to oxidation. Am J Clin Nutr 1998;68:235-241
[19] Suzukawa M, Abbey M, Peter R et al .Effects of fish oil fatty acids on low density lipoprotein size, oxidizability, and uptake by macrophages. Journal of Lipid Research. 1995,36:473-484
[20] Finnegan Y E, Minihane A M, Elizabeth C et al. Plant and marinederived n3 polyunsaturated fatty acids have differential effects on fasting and postprandial blood lipid concentrations and on the susceptibility of LDL to oxidative modification in moderately hyperlipidemic subjects. Am J Clin Nutr.2003;77:783-794.
[21] Drevon CA, Nenseter MS, Brude IR,Omega3 fatty acidsnutritional aspects. Can J Cardiol,1995,Oct;11 Suppl G:47G-54G.
[22] Almario RU, Vonghavaravat V, Rodney W et al. Effects of walnut consumption on plasma fatty acids and lipoproteins in combined hyperlipidemia. Am J Clin Nutr 2001; 74:72-79
[23]David K. Regulatory effects of individual n6 and n3 polyunsaturated fatty acids on LDL transport in the rat. Journal of Lipid Research. 1993; 34:1337-1346.
[24] Rosseneu M, Declercq B, Vandamme D et al. Influence of oral polyunsaturated and saturated phospholipid treatment on the lipid composition and fatty acid profile of chimpanzee lipoproteins. Atherosclerosis, 1979, 32(2):141-53.
[25] Gottlicher M, Widmark E, Li Q, et al. Fatty acids activate a chimera of the clofibric acidactivated receptor and the glucocorticoid receptor. Proc Natl Acad Sci U S A. 1992; 4653-4657
[26] Richard J, Rebecca A, Johnson et al. Unsaturated fatty acids inhibit sterol regulatory elementdepend gene expression: a potential mechanism contributing to hypertriglyceridemia in fatrestricted diets. Exp Boil Med, 2000; 184:1998
[27] Harini S, James M. Polyunsaturated Fatty acid regulation of gene expression. Nutrition Reviews, 2004; 62:333
[28] The role of liver X receptorαin the fatty acid regulation of hepatic gene expression. J Biological Chemistry.2003:278:40736-40743.
[29] Hayhurst GP, Lee YH, Lambert G, et al. Hepatocyte nuclear factor4 alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol .2001; 21:1393
[30] Junmp, DB. Fatty acid regulation of gene transcription.  Critical Reviews in Clinical Laboratory Sciences 2004;41:41-78.
[31] Artemis P S. Essential fatty acids in health and chronic disease. Am J Clin Nutr, 1999, 70:560s569s.
[32] Michael J, Virginia M, Leslie G etal. Metabolism of stearidonic acid in human subjects: comparision with the metabolism of other n3 fatty acids. Am J Clin Nutr 2003; 77:1140-1150
[33] Zhong F, Andrew J. Novel pathway of metaboilsm of alphalinolenic acid in the Guinea pig. Pediatric Research.2000.47:414-417
[34] Robert J, Joseph R, Janet A at el. Physiological compartmental analysis of alphalinolenic acid metabolism in adult humans. Journal of lipid research.2001,42:1257-1264.
[35] Rebecca C, Sheaff, HuiMin Su etal. Convension of αlinolenate to docosahexaenoate is not depressed by high dietary levels of linoleate in young rats: tracer evidence using high precision mass spectrometry. Journal of Lipid Research, 1995:36:998-1008.
[36] Alfonso V, Rommy VB, Viviana A et al.  Supplementation of female rats with αlinolenic acid or docosahexaenoic acid leads to the same omega6/omega3 LCPUFA accretion in mother tissue and in fetal and newborn brains. Ann Nutr Metab.2004; 48:28-35.
[37] Emken EA, Adlot RO, Gulley RM. Dietary linoleic acid influences desaturation and acylation of deuteriumlabeled linoleic and linolenic acids in young adult males. Biochim Biophys Acta. 1994, 1213:277-288.
[38] Claudia M, Marga C,Edith JM et al. αlinolenic acid intake is not beneficially associated with 10yrisk of coronary artery disease incidence:the Zutphen Elderly Study. Am J Clin Nutr.2001; 74:457-463.

 


 

赞皇县| 额敏县| 横山县| 巴林左旗| 丰都县| 夏邑县| 石楼县| 岱山县| 云南省| 仁布县| 温泉县| 孟连| 娱乐| 渝中区| 合川市| 固安县| 名山县| 乡宁县| 拉孜县| 金秀| 绩溪县| 志丹县| 霸州市| 清苑县| 普定县| 屯门区| 沧州市| 陕西省| 绥滨县| 江华| 德化县| 宜州市| 乌海市| 潼南县| 奉化市| 阿城市| 台江县| 蓬溪县| 凤台县| 黄骅市| 丰顺县|